Figure 2.

Evolutionary relationships between the WASP and WAVE family proteins. The phylogeny was inferred using the neighbor-joining method. ClustalW was used to align sequences and perform phylogenetic analysis. Any position containing gaps was excluded from the dataset. Trees were drawn by NJplot [89]. Bootstrap values were calculated over 1,000 iterations and values greater than 50% are shown as percentages next to branches. The bar in each figure indicates the proportion of amino acid differences. (a) The phylogenetic tree based on the alignment of combined sequences of V and C regions. WASP and WAVE sequences were retrieved from the NCBI protein database and the V/WH2 domain for each protein was identified by homology search over the Pfam-A database. C regions were identified according to the previously reported consensus sequence [29]. The sequence to be analyzed was generated by joining the identified V sequence and C sequence. (b) The phylogenic tree based on WH1/EVH1 domain alignment. WH1/EVH1 domains were identified by homology search over the PROSITE database. (c) The phylogenetic tree based on WHD/SHD domain alignment. WHD/SHD domains were identified following the consensus sequence described previously [90]. Species examined are Homo sapiens (Hs), Mus musculus (Mm), Danio rerio (Dr), Drosophila melanogaster (Dm), Caenorhabditis elegans (Ce), Saccharomyces cerevisiae (Sc), Dictyostelium discoideum (Dd) and Arabidopsis thaliana (At). Ensembl protein IDs for the zebrafish sequences used in the analysis are as follows: Dr WASP1, ENSDARP00000039217; Dr WASP2, ENSDARP00000007963; Dr N-WASPa, ENSDARP00000094295; Dr N-WASPb, ENSDARP00000005823; Dr WAVE1, ENSDARP00000079387; Dr WAVE2, ENSDARP00000093195; Dr WAVE3a, ENSDARP00000077123; Dr WAVE3b, ENSDARP00000085962. Two other homologous genes for WAVE were identified in the zebrafish genome, but could not be assigned to homologs of mammalian WAVE1/2/3, so they were omitted from the analysis. These proteins are ENSDARP00000047935 and ENSDARP00000102646.

Kurisu and Takenawa Genome Biology 2009 10:226   doi:10.1186/gb-2009-10-6-226
Download authors' original image