Research
Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma
1 Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
2 Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Mexico
3 Broad Institute of MIT and Harvard, 301 Binney St, Cambridge, MA 02142, USA
4 Centro Hispanoluso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Calle Del Duero, 12, Villamayor 37185, Spain
5 División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, No. 2055, Colonia Lomas 4a Sección, San Luis Potosí, SLP., 78216, México
6 Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Technion City, Haifa, 32000, Israel
7 Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
8 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
9 DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
10 School of Biological Sciences, University of Missouri- Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
11 Institut de Biologie de l'École normale supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 46, rue d'Ulm, Paris 75005, France
12 Chemistry and Biomolecular Sciences, Macquarie University, Research Park Drive Building F7B, North Ryde, Sydney, NSW 2109, Australia
13 TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie OE2, Franklinstr. 29, 10587 Berlin, Germany
14 Department of Plant Pathology and Microbiology Building 0444, Nagle Street, Texas A&M University College Station, TX 77843, USA
15 Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
16 Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos 73, Burjassot (Valencia) E-46100, Spain
17 Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Université de la Méditerranée, Case 932, 163 Avenue de Luminy, 13288 Marseille 13288, France
18 Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Lautrupvang 15, DK-2750 Ballerup, Denmark
19 Biotechnology Department, IFP Energies nouvelles, 1-4 avenue de Bois Préau, Rueil-Malmaison, 92852, France
20 Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
21 Wageningen University, Systems and Synthetic Biology, Fungal Systems Biology Group, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
22 Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
Genome Biology 2011, 12:R40 doi:10.1186/gb-2011-12-4-r40
Published: 18 April 2011Abstract
Background
Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.
Results
Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.
Conclusions
The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.



