Figure 9.

Peripheral chromosome 5 position in liver is reduced by depletion of liver NETs. (a) Chromosome 5 in human liver or kidney sections. Scale bar, 5 μm. (b) Chromosome 5 positioning was quantified for the two tissues (n = 100). (c) NET45 and NET47 were depleted by RNA interference in HepG2 cells, a liver-derived human cell line. A scrambled siRNA sequence was used as a control. The knockdown over time is shown by western blot. The signal intensity of bands on the blots was quantified and the band intensity for each siRNA was set to 1 for day 0. The normalized intensity of the bands over the time course is shown above each band. (d) Chromosome 5 in siRNA-treated HepG2 cells (left, scramble control; right, NET depleted). Scale bar, 5 μm. (e) Quantification of the results in (d); 100 cells were counted for each timepoint. The percentage of chromosomes relocated away from the periphery by the combined NET45/NET47 knockdown increased over time, also strengthening the statistical significance. (f) NET45 and NET47 were also tested individually to determine if both were needed for the normal peripheral localization. Each alone reduced the percentage of chromosome 5 at the periphery. The combined knockdown had a stronger effect than either NET alone (n = 100). Error bars indicate standard deviation between the means of individual experiments. *P < 0.05 and **P < 0.01, comparing the position of the chromosome in the si NET cells to the si scramble control using KS tests. Statistics are given in Additional file 1.

Zuleger et al. Genome Biology 2013 14:R14   doi:10.1186/gb-2013-14-2-r14
Download authors' original image