Additional file 1.

Figure S1: Schematic of the whole-transcript amplification methods based on the poly-A-tailing reaction. Figure S2: Improvement parameters of whole-transcript amplification for Quartz-Seq. Figure S3: Key steps for robust suppression of byproducts. Figure S4: Optimization of suppression PCR for Quartz-Seq. Figure S5: Optimal DNA polymerase for whole-transcript amplification. Figure S6: Quality check of the library preparation for single-cell Quartz-Seq. Figure S8: Percentage of sequence reads of the suppression PCR primer or rRNA. Figure S9: Relationship between the read number and the reproducibility. Figure S10: Optimization of cDNA length in technical development for single-cell Quartz-Seq. Figure S11: Trend of unamplified isoforms in each single-cell RNA-seq method. Figure S12: Amplified cDNA lengths resulting from single-cell RNA-seq methods. Figure S13: Success rate of whole-transcript amplification from single cells sorted by fluorescence-activated cell sorting (FACS). Figure S14: Amount of total RNA from a single cell at each cell-cycle phase. Figure S15: Principal component analysis (PCA) of single cells from different cell types at different cell-cycle phases. Figure S16: Over-representation analyses for principal component (PC) of single cells from same cell types in the same cell-cycle phase (G1). Figure S17: Scatter plots of conventional RNA-seq and Quartz-Seq using 50 ES cells in the G1 phase of the cell cycle and Quartz-Seq using 10 pg of total ES RNA. Figure S18: Effect of carried-over buffer for PCR efficiency.

Format: PDF Size: 17.1MB Download file

This file can be viewed with: Adobe Acrobat Reader

Sasagawa et al. Genome Biology 2013 14:R31   doi:10.1186/gb-2013-14-4-r31