Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from Genome Biology and BioMed Central.

Open Access Highly Accessed Research

Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids

Guangming He1*, Beibei Chen23, Xuncheng Wang4, Xueyong Li25, Jigang Li12, Hang He1, Mei Yang1, Lu Lu6, Yijun Qi7, Xiping Wang6 and Xing Wang Deng12*

Author Affiliations

1 Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China

2 Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA

3 Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China

4 Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Tsinghua Park No. 1, Haidian District, Beijing 100084, China

5 National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China

6 College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China

7 National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China

For all author emails, please log on.

Genome Biology 2013, 14:R57  doi:10.1186/gb-2013-14-6-r57

Published: 12 June 2013

Additional files

Additional file 1:

Table S1: Summary of total reads obtained from all sequencing libraries.

Format: PDF Size: 22KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 2:

Figures S1 to 11. Figure S1: Mean levels of exons and introns in shoots and roots of reciprocal hybrids. Figure S2: Distribution of H3K36me3 levels within and around differentially expressed genes. Figure S3: Experimental validation of methylated DNA regions by genomic bisulfite sequencing. Figure S4: A representative genomic region on maize chromosome 1 showing integrated maps of transcription and epigenetic modifications. Figure S5: Tree view of hierarchical clustering of H3K9ac and H3K36me3 levels. Figure S6: Relationships of variations in H3K36me3 and gene expression between organs and between genotypes. Figure S7: Functional categories of genes upregulated in shoots and roots of hybrids. Figure S8: Correlation of allelic expression bias between shoots and roots of Mo17 ยด B73. Figure S9: Coverage of 21 nt, 22 nt, and 24 nt siRNA clusters in and around protein-coding genes. Figure S10: Distribution of 21 nt and 22 nt siRNA clusters on maize chromosome 1. Figure S11: Correlation between 22 nt siRNAs and DNA-methylation levels at the same genomic loci.

Format: PDF Size: 1.2MB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data

Additional file 3:

Tables S2 and 3. Table S2: List of genes showing expression variation in shoots and roots of maize hybrids. Table S3: Number of small RNA reads associated with known maize microRNAs.

Format: XLS Size: 514KB Download file

This file can be viewed with: Microsoft Excel Viewer

Open Data

Additional file 4:

Supplemental methods. Details of data processing and analyses.

Format: PDF Size: 148KB Download file

This file can be viewed with: Adobe Acrobat Reader

Open Data