Open Access Research

Experimental characterization of the human non-sequence-specific nucleic acid interactome

Gerhard Duernberger, Tilmann Burckstummer, Kilian Huber, Roberto Giambruno, Tobias Doerks, Evren Karayel, Thomas R Burkard, Ines Kaupe, Andre C Muller, Andreas Schonegger, Gerhard F Ecker, Hans Lohninger, Peer Bork, Keiryn L Bennett, Giulio Superti-Furga and Jacques Colinge

For all author emails, please log on.

Genome Biology 2013, 14:R81 doi:10.1186/gb-2013-14-7-r81

Published: 31 July 2013

Abstract (provisional)

Background

The interactions between proteins and nucleic acids have a fundamental function in many biological processes, including gene transcription, RNA homeostasis, protein translation and pathogen sensing for innate immunity. While our knowledge of the ensemble of proteins that bind individual mRNAs in mammalian cells has been greatly augmented by recent surveys, no systematic study on the non-sequence-specific engagement of native human proteins with various types of nucleic acids has been reported.

Results

We designed an experimental approach to achieve broad coverage of the non-sequence-specific RNA and DNA binding space, including methylated cytosine, and tested for interaction potential with the human proteome. We used 25 rationally designed nucleic acid probes in an affinity purification mass spectrometry and bioinformatics workflow to identify proteins from whole cell extracts of three different human cell lines. The proteins were profiled for their binding preferences to the different general types of nucleic acids. The study identified 746 high-confidence direct binders, 139 of which were novel and 238 devoid of previous experimental evidence. We could assign specific affinities for sub-types of nucleic acid probes to 219 distinct proteins and individual domains. The evolutionarily conserved protein YB-1, previously associated with cancer and drug resistance, was shown to bind methylated cytosine preferentially, potentially conferring upon YB-1 an epigenetics-related function.

Conclusions

The dataset described here represents a rich resource of experimentally determined nucleic acid-binding proteins, and our methodology has great potential for further exploration of the interface between the protein and nucleic acid realms.

The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.